# [11:00] Recap: FIR filters and convolution

For an FIR filter, the coefficients  $b_k$  are synonymous with the impulse response h[n].

The output of an LTI system is obtained by convolving the input with the IR.

Let 
$$x[n] = \delta[n]$$
. Then, the output  $h[n]$  is 
$$y[n] = x[n] * h[n]$$

$$= h[n] * x[n]$$

$$= \sum_{k=0}^{M} b_k \delta[n-k]$$

$$= \begin{cases} b_n & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

$$= \sum_{k=0}^{M} b_k x[n-k]$$
for an FIR filter with

Deconvolution can be used to obtain x[n] from y[n] and h[n] or to obtain h[n] from y[n] and x[n].

# [11:15-11:40] Linear time invariant systems

**Time invariance.** Let x[n] be an arbitrary input to a system  $\mathcal{T}$  and let y[n] be the corresponding output. The system  $\mathcal{T}$  is time-invariant if, for any time shift  $n_0$ .

$$\mathcal{T}\{x[n-n_0]\} = y[n-n_0]$$

**Example:**  $y[n] = x^2[n]$ .

$$\mathcal{T}\{x[n-n_0]\} = (x[n-n_0])^2 = x^2[n-n_0] = y[n-n_0]$$
 (Yes, this is TI)

**Additivity.** Let  $x_1[n]$  and  $x_2[n]$  be arbitrary input signals to a system  $\mathcal{T}$ . The system satisfies additivity if

$$\mathcal{T}\{x_1[n] + x_2[n]\} = \mathcal{T}\{x_1[n]\} + \mathcal{T}\{x_2[n]\}$$

Example:  $y[n] = x^2[n]$ 

$$\mathcal{T}\{x_1[n] + x_2[n]\} = x_1^2[n] + 2x_1[n]x_2[n] + x_2^2[n]$$
 
$$\neq y_1[n] + y_2[n]$$
 (No, does not satisfy additivity)

**Homogeneity.** Let x[n] be an arbitrary input to a system  $\mathcal{T}$ . The system satisfies homogeneity if, for any constant  $a_r$ 

$$\mathcal{T}\{a \cdot x[n]\} = a \cdot \mathcal{T}\{x[n]\}$$

**Example:**  $y[n] = x^2[n]$ 

$$\mathcal{T}\{ax[n]\} = a^2x^2[n] \neq ax^2[n] = y^2[n]$$
 (no, does not satisfy homogeneity)

**Linear time-invariant.** A system is linear time-invariant (LTI) if it satisfies additivity, homogeneity, and time-invariance properties. A common way for a system to violate these properties is if the system has nonzero initial conditions.

# [11:50-] Role of initial conditions

**Example:** unit delay  $y[n] = \mathcal{T}\{x[n]\} = x[n-1]$ 

The first input value is x[0] and the first output value is y[0].

If we observe for  $-\infty < n < \infty$ , we can always compute the output using

$$y[n] = x[n-1]$$

If we only observe for  $n \ge 0$ , we cannot determine y[0] from the input. Instead, y[0] is the initial value in the memory of the ideal delay block.

$$y[0] = ?$$

$$y[1] = x[0]$$

$$y[2] = x[1]$$

$$\vdots = \vdots$$

To satisfy homogeneity, we require that  $\mathcal{T}\{a \cdot x[n]\} = a \cdot \mathcal{T}\{x[n]\}$ 

All-zero input test (check if  $\mathcal{T}\{0\} = 0$ )

$$x[0] = 0,$$
  $x[1] = 0,$   $x[2] = 0,$  ...  
 $y[0] = IC,$   $y[1] = 0,$   $y[2] = 0,$  ...

Thus for the unit delay, homogeneity is only satisfied when the initial condition is zero.

# [12:05-] Linear constant coefficient differential equation

$$y(t) = a_1 y'(t) + \dots = x(t) + b_1 x'(t) + \dots, \qquad \text{for } t \ge 0$$

$$y(t) = \underbrace{h(t) * x(t)}_{\text{response due to zero}} + \underbrace{y(0)}_{\text{response due to initial conditions}}$$

$$y(t) = \underbrace{h(t) * x(t)}_{\text{response due to initial conditions}} + \underbrace{y(0)}_{\text{response due to initial conditions}}$$

#### Doc cam

Linear Constant Coefficient

Differential Equation

$$y(t) + a, y'(t) + \cdots = y(t) + b, x(t) + \cdots$$

for  $t \ge 0$ 

$$y(t) = h(t) * x(t) + \cdots$$

response due

response due

to non-zero

to zero initial

conditions

and x(t) = 0

Third conditions

[y(0)]

[y'(0)]

[y'(0)]

State of the system